GENOMIC EPIDEMIOLOGY WITH TRANSPHYLO: METHODS, APPLICATIONS AND LIMITATIONS

Caroline Colijn

Caroline Colijn

SEQUENCING FOR PATHOGENS: THERE IS A LOT OF DATA

Sequencing is cheap now

Recent influenza H3N2 subset

We can sequence *lots* of pathogen: thousands per study

Caroline Colijn

Genomics to transmission

2 / 42

WE WANT TO UNDERSTAND TRANSMISSION

WE HAVE SEQUENCES

Phylogeny: tips – taxa (sequences). Internal nodes – inferred common ancestors of groups of tips.

Caroline Colijn

REMEMBER THE OLD GAME OF "TELEPHONE?

TRANSMISSION TREE

Definition: A *transmission tree* is a tree in which nodes are people and edges (directed) correspond to infection events.

Edges may be associated with times of infection.

QUESTION: How are transmission trees and phylogenies related?

EXAMPLE: TRANSMISSION TREE AND PHYLOGENY

A infects B and C

Phylogeny

TRANSMISSIONS CANNOT ALL BE PHYLOGENETIC PAIRS

You can only be in a pair with one other.

But you could infect many others.

Not all transmission events can be phylo pairs.

Not all closely related pairs of sequences are transmission events.

GENOMICS DOESN'T DIRECTLY REVEAL TRANSMISSION

- How closely related are transmission pairs? (variable)
- What if people harbour diverse infections?
- How informative are the times of diagnosis?
- What about unsampled cases?
- What about transmission bottlenecks big or small?

IN-HOST DIVERSITY

Transmission pairs are not necessarily phylogenetic pairs.

COLOURING CAN HELP RELATE PHYLOGENY AND TRANSMISSION TREES

Lineage: section of a branch of a tree.

Reasonable constraints:

- Hosts can have more than one lineage at a time
- Each lineage can only be in one host at each time
- Lineages change hosts at transmission events.

Colour: which host a lineage is in

Each admissable colouring corresponds to a transmission tree.

WHAT IS AN ADMISSIBLE COLOURING?

- Each host has a colour
- Not all hosts have to be sampled
- Each lineage is in one host at each time (one colour)
- Colours can't be broken up (each colour must be continuous on the tree)

A VALID COLOURING FOR A TB OUTBREAK

Caroline Colijn

13 / 42

How does the phylogeny constrain transmission?

There are constraints!

- If B infected A, B must have infected C
- If A infects B early, then B infected C
- If C infected A, then C infected B

Phylogeny

WE USE THE COLOURING TO FIND A LIKELIHOOD

TRANSMISSION

- Epi: epidemiological parameters defining the transmission process
- T: transmission tree
- Colour changes are transmission events
- Likelihood: branching process model

Phylogenies

- G: the phylogeny (fixed input from data)
- Transmissions break G into independent g_i , one for each host
- We use a coalescent model for g_i ; coalescent effective population size is $N_e g$

DECOMPOSITION GIVEN FIXED PHYLOGENETIC TREE

 $\textbf{L}(\text{Trans}|\text{Phylo}) \propto \textbf{L}(\text{Trans events})\textbf{L}(\text{Phylo}|\text{Trans events})\textit{Priors}$

L(Transmissions):

- Epidemic model for the system: latency, time to infection, time to sampling
- Finite time due to study end (or the present): this modifies the distribution secondary cases depending on infection time and the sampling probability

L(Phylo|Trans events) :

- Each colour is independent: many little trees
- Coalescent for each one

MODELLING FOR THE TRANSMISSION LIKELIHOOD

- The offspring distribution is negative binomial (r, p). The probability of k offspring is $p_k = \binom{k+r-1}{r-1}p^k(1-p)^r$
- The probability of sampling someone infected at time t is $\pi_t = \pi \int_t^T f_s(\tau t) d\tau = \int_0^{T-t} f_s(\tau) d\tau.$
- The study ends at time T; after that no one is sampled.
- The generation time density is $f_g(\tau)$ where $f_g(0) = 0$ and τ is the time since infection

NOT ALL CASES ARE SAMPLED

Let $p_0(t)$ be the probability of being unsampled and having all descendants unsampled, having been infected at time t.

As $t \to -\infty$, $p_0(t) \to p_0^*$ which is the solution to the usual equation (conditioning on the number of offspring of the ancestor)

$$p_0^* = (1 - \pi) \sum_{k=0}^{\infty} p_k p_0^{*k}$$

However, we have a finite time T. We know that $p_0(T) = 1$.

MATH: FINITE TIME, UNSAMPLED CASES

Starting point: probability unsampled and no sampled descendants, if infected at \boldsymbol{t}

$$p_{0}(t) = P(\text{unsampled}) \sum_{k} P(\text{k offspring at } \tau_{j}) P(\text{they are unsampled})$$
$$= (1 - \pi_{t}) \sum_{k=0}^{\infty} p_{k}(t) \prod_{j=1}^{k} \left[\int_{t}^{\infty} f_{g}^{T}(\tau_{j} - t) p_{0}(\tau_{j}) d\tau_{j} \right]$$
$$= (1 - \pi_{t}) \sum_{k=0}^{\infty} p_{k}(t) [\text{Thing}]^{k}$$

Now use p_k 's generating function, $f(s) = \sum_{k=0}^{\infty} p_k s^k$.

If
$$p_k$$
 is negative binomial: $p_0(t) = (1 - \pi_t) \left(\frac{1-p}{1-p\text{Thing}}\right)^r$

MATH: BUILDING UP TRANSMISSION LIKELIHOOD

We solve $p_0(t) = (1 - \pi_t) \left(\frac{1-p}{1-p \text{ Thing}}\right)^r$ with the trapezoid method, because Thing has p_0 in it.

This gives P(unsampled, no sampled descendants | infected at t).

Someone in the tree could have infected k others with only d_0 of them who are sampled.

$$p(d_0, t) = \sum_{k=d_0}^{\infty} {\binom{k}{d_0}} p_k \bar{p}_0(t)^{k-d_0} p_s(d_0)$$

which we can compute (typically d_0 is small).

TRANSMISSION LIKELIHOOD

Let host *i* have: $s_i = 0, 1$ if unsampled, sampled. The times t_{inf}^i and t_i^s are times of infection, sampling. Then:

$$\mathbf{L}(T|Epi) = \prod_{i=1}^{n} (1-\pi)^{1-s_i} (\pi f_s(t_i^s - t_{\inf}^i))^{s_i} p(d_0^i, t_{\inf}^i) \prod_{j=1}^{d_0^i} f_g(t_{\inf}^j - t_{\inf}^i)$$

For each case *i*:

- Was *i* sampled? likelihood depends on end time *T* and time of infection *t_i*
- If so, use likelihood for time of sampling for case i
- probability (*i* had d_0 sampled descendants, ie $p(d_0, t)$
- $\prod_{i=1}^{d_0}$ (likelihood for the time that *i* had the *j*'th descendant)

We use the likelihood in MCMC inference

Start with a phylogenetic tree (units of time) and info for the epidemiological model.

- Propose a colouring: who infected whom, and when
- 2 Compute its likelihood L(Trans|Epi) using the epidemiology model
 - This uses data on how long between infection and sampling, natural history, sampling fraction, basic reproductive number
- Compute the likelihood for the mini-trees inside each host (coalescent model)
- Accept or reject the proposal
- 6 Continue (MCMC)

At the end you have a posterior collection of who infected whom and when transmission trees.

All together: sequences to transmission

This approach takes in a fixed phylogenetic tree and priors, and produces:

- coloured phylogenetic trees
- transmission trees: who infected whom, and when
- how long between infection and infecting others
- how long between infection and sampling
- placement of missing cases

Didelot, Fraser, Gardy, Colijn MBE 2017 TransPhylo:

https://github.com/xavierdidelot/TransPhylo

useful! useful! useful! useful!

What data does TransPhylo need?

- A timed phylogenetic tree (or a posterior collection of them)
- Sampling dates for the tips (ie the isolates)
- A prior for the time between getting infected and infecting someone else
- A prior for the time between getting infected and getting sampled
- A prior for the overall probability of being sampled eventually
- The time when sampling stopped. Finite time makes a difference! (censoring)

WHAT DOES TRANSPHYLO PRODUCE?

Formally, TransPhylo estimates 3 key parameters: the mean of the offspring distribution (R_0 , in epidemiology), the in-host effective population size, and the sampling fraction.

In practice, we use the posterior collection of

- who infected whom?
- generation times
- times between infection and sampling
- unsampled cases and their locations in the phylogeny

TB CLUSTERS IN NORWAY

- We analyzed a strain of TB circulating in Norway
- Often, a case's country of origin has higher TB burden than Norway
- Closely-related cases suggested recent transmission.
- Generation time and sampling time priors reflect uncertainty
- Question: is there transmission in Norway?

Genome-based transmission modelling separates imported tuberculosis from recent transmission within an immigrant population.

Ayabina et al, Microbial Genomics, 2018

INFECTED IN NORWAY OR NOT?

Red: Posterior time of infection. Blue: arrival in Norway.

Some cases were very likely infected in Norway.

Caroline Colijn

Genomics to transmission 27 / 42

What if the data are not just one big tree?

- Many small clusters, large genetic distances away
- TransPhylo has to place unsampled cases on the long branches
- it will not explore transmissions on clusters efficiently.

MANY INPUT TREES

- There may be many input phylogenetic trees
- boostrapping, different clock rates, tree models
- Bayesian tree inference

Improvement: use TransPhylo on *lots of trees* at the same time, *sharing parameters* between them.

IDEA: SHARE PARAMETERS FROM ONE DATASET TO ANOTHER

- Simultaneous transmission inference
- TransPhylo formally estimates 3 things: *R*₀, sampling fraction, in-host effective population size
- For *n* clusters separately, that would be 3*n* parameters
- With parameter sharing: estimate 3 parameters instead of 3*n*.
- Each cluster is informed by the others.
- Computational efficiency, tighter Cls

JOINT TRANSMISSION INFERENCE

- Joint tree space: Let $T = (T_1, ..., T_n)$ where T_i are the individual clusters (trees)
- Likelihood

• no parameter sharing - need to estimate all the θ_i :

 $p(T|\theta) = \prod_{i=1}^{n} p(T_i|\theta_1, \theta_2, \theta_3, ..., \theta_n),$

• with parameter sharing - need to estimate only θ :

 $p(T|\theta) = \prod_{i=1}^{n} p(T_i|\theta)$

where θ is one set of parameters common for all clusters. We can choose to share some or all of the parameters.

CASE STUDY OF TB TRANSMISSION CLUSTERS

- 110 transmission clusters of TB in Valencia, Spain from 2014.
- We have sequence alignments and sampling dates; 764 cases.

FIGURE: Genetically-defined transmission clusters (from lñaki Comas, TB Genomics Unit, Valencia). Xu et al, *High-resolution mapping of TB transmission...*, PLOS Medicine, 2019.

QUESTIONS FROM PUBLIC HEALTH

- Was the first diagnosed case the index case?
- Is there evidence of transmission before (recalled, diagnosed) symptom onset?
- How long between infection and infecting others?
- How long between infection and sampling?
- Are most clusters chains, with each case infecting one other? or more complex patterns?
- How many cases are we missing? In particular, are we missing the index case?

The dated phylogeny for clusters CL001-CL004

- Use treedater to date the phylogenetic trees
- Treedater can use time intervals for tips without exact dates

Some clusters have more unsampled cases than others

INFECTION EVENTS ARE UNCERTAIN

Infection network for cluster 45 showing uncertain infection events

Width: posterior probability

We can separate likely TB transmitters from other clustered cases.

Caroline Colijn

Genomics to transmission 36

WAS THE FIRST DIAGNOSED CASE THE INDEX CASE?

Height: number posterior trees where the case was the index case. Red: most likely index case

Incorporating epidemiological data

We can include information in the prior. This helps resolve transmission.

- Location
- Plausible transmission time (eg negative screen, leaving date)
- Symptom time
- Contact data: when two individuals were in contact

Matthew Gould mattgou1d

R package for comparison of trees using a tree defining polynomial

https://github.com/mattgou1d/TransPhylo

treenomial

Advantages of the TransPhylo approach

- Includes genetic data and unsampled cases
- Transmission trees consistent with phylogeny respect constraints
- Posterior collection of augmented trees easy to interpret
- Captures uncertainty considerable uncertainty left even with genomic data
- Can suggest where there are unsampled infectors, infectees
- Can distinguish credible transmitters from all clustered cases
- Can scale to large-ish data sets using multiple trees simultaneously

LIMITATIONS: TRANSMISSION

We model person-to-person transmission, dense sampling

- No environmental reservoir sinks, taps, kitchens, ponds, vectors etc
- \bullet Models direct transmission events. If you have $<\sim75\%$ sampling, another method is likely to be better
- Currently: fixed sampling over time (quite easy to change)
- It is a two-stage process (first phylogeny, then transmission):
 - Requires timed phylogenetic tree(s)
 - Constructing these can be cumbersome and noisy
 - Simultaneous reconstruction of the phylogenetic tree *and* the transmission tree? (hard but do-able)
 - If sequences don't define one true phylogenetic tree, using many combined is OK but simultaneous inference likely better

LIMITATIONS: COVARIATE DATA

- The branching process likelihood uses a recursion where we condition on the k infectees, of whom k - d₀ were unsampled.
- We integrated out the unsampled cases' unknown times of infection
- We can't integrate out their unknown values of lots of covariates: location, demographics, clinical history, prison history etc etc
- Best we can do: eg penalize transmission trees that "break rules", by setting priors for individual transmission events based on covariate data
- Perhaps a survival analysis likelihood would do better: see Eben Kenah's talk, and work

THANK YOU. QUESTIONS?

- Matthew Gould (SFU), Jessica Stockdale (SFU)
- Vegard Eldholm (Norway)
- Yuanwei Xu (Imperial)
- Iñaki Comas (Valencia)
- Xavier Didelot (Warwick), Christophe Fraser (Oxford), Jennifer Gardy (Gates Foundation)

